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Assuming the continuum hypothesis, we prove that B(H) has a
pure state whose restriction to any masa is not pure. This resolves
negatively old conjectures of Kadison and Singer and of Anderson.

bounded operators � Hilbert space

Let H be a separable infinite-dimensional Hilbert space and let
B(H) be the algebra of bounded operators on H. Kadison and

Singer (1) suggested that every pure state on B(H) would restrict
to a pure state on some maximal abelian self- adjoint subalgebra
(masa). Anderson (2) formulated the stronger conjecture that
every pure state on B(H) is diagonalizable, that is, of the form
f(A) � limU �Aen, en� for some orthonormal basis (en) and some
ultrafilter U over N.

An atomic masa is the set of all operators that are diagonalized
with respect to some given orthonormal basis of H. Anderson’s
conjecture is related to a fundamental problem in C*-algebras
also raised in ref. 1 and now known as the Kadison–Singer
problem, which asks whether every pure state on an atomic masa
of B(H) has a unique extension to a pure state on B(H). If (en)
is an orthonormal basis of H, then every pure state f0 on the
corresponding atomic masa M has the form f0(A) � limU�Aen, en�
for some ultrafilter U over N and all A � M, and Anderson (3)
showed that the same formula, now for A � B(H), defines a pure
state f on B(H). Thus, a positive solution to the Kadison–Singer
problem would say that f is the only pure state on B(H) that
extends f0.

In the presence of a positive solution to the Kadison–Singer
problem, Anderson’s conjecture is equivalent to the weaker
statement that every pure state on B(H) restricts to a pure state
on some atomic masa. However, assuming the continuum hy-
pothesis, we show that this weaker statement is false; in fact,
there exist pure states on B(H) whose restriction to any masa is
not pure. It follows that there are pure states on B(H) that are
not diagonalizable. It seems likely that the statement ‘‘every pure
state on B(H) restricts to a pure state on some atomic masa’’ is
also consistent with standard set theory. This, together with a
positive solution to the Kadison–Singer problem, would imply
the consistency of a positive answer to Anderson’s conjecture.

The key lemma we need is the following. Let K(H) be the
algebra of compact operators on H, let C(H) � B(H)/K(H) be the
Calkin algebra, and let � : B(H)3 C(H) be the natural quotient
map. We also write ȧ for �(a), for any a � B(H).

Lemma 0.1. Let A be a separable C*-subalgebra of B(H) which
contains K(H), let f be a pure state on A that annihilates K(H), and
let M be a masa of B(H). Then there is a pure state g on B(H) that
extends f and whose restriction to M is not pure.

Proof: By Proposition 6 of ref. 4 we can find an infinite-rank
projection p � B(H) such that

ṗȧṗ � f�a�ṗ [1]

for all a � A.
Lemma 1.4 and Theorem 2.1 of ref. 5 imply that �(M) is a

masa of C(H). It follows that there is a projection q � M such that
q̇ neither contains nor is orthogonal to ṗ. Otherwise ṗ would be

in the commutant of �(M), and hence would belong to �(M) by
maximality. But this would mean ṗ is minimal in �(M) because
any nonzero projection below ṗ neither contains nor is orthog-
onal to ṗ, and �(M) has no minimal projections.

Let � : C(H) 3 B(K) be an irreducible representation of the
Calkin algebra. It is faithful because C(H) is simple. Therefore,
�(q̇) neither contains nor is orthogonal to �(ṗ), so we can find
a unit vector � � K in the range of �(ṗ) which is neither
contained in nor orthogonal to the range of �(q̇). Finally, define
g(a) � ��(ȧ)�, �� for all a � B(H). This is a pure state on B(H)
because � � � is an irreducible representation of B(H). It extends
f because, using Eq. 1,

g�a� � ���ȧ�v, v� � ���ȧ���ṗ�v, �� ṗ�v� � ��� ṗȧṗ�v, v�

� � f�a���ṗ�v, v� � f�a�

for all a � A. Finally, its restriction to M is not pure because the
projection q � M has the property that

g�q� � ���q̇�v, v�

is strictly between 0 and 1, since � is neither contained in nor
orthogonal to the range of �(q̇). e

Theorem 0.2. Assume the continuum hypothesis. Then there is a pure
state on B(H) whose restriction to any masa is not pure.

Proof: Let (a�), � � � 1, enumerate the elements of B(H). Since
every von Neumann subalgebra of B(H) is countably generated,
a simple cardinality argument shows that there are only �1 such
subalgebras. Hence, B(H) has only �1 masas. Let (M�), � � �1,
enumerate the masas of B(H).

We now inductively construct a nested transfinite sequence of
unital separable C*-subalgebras A� of B(H) together with pure
states f� on A� such that for all � � �1

1. a� � A� � 1.
2. if � � � then f� restricted to A� equals f�.
3. A� � 1 contains a projection q� � M� such that 0

� f� � 1 (q�) � 1.

Begin by letting A0 be any separable C*-subalgebra of B(H) that
is unital and contains K(H) and let f0 be any pure state on A0 that
annihilates K(H). At successor stages, use the lemma to find a
projection q� � M� and a pure state g on B(H) such that g�A� �
f� and 0 � g(q�) � 1. By Lemma 4 of ref. 6 there is a separable
C*-algebra A� � 1 � B(H) that contains A�, a�, and q�, and such
that the restriction f� � 1 of g to A� � 1 is pure. To see this, write
B(H) as the union of a continuous nested transfinite sequence
of separable C*-algebras B� such that B0 is the C*-algebra
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generated by A�, a�, and q�. The cited lemma guarantees that the
restriction of g to some B� will be pure. Thus, the construction
may proceed. At limit ordinals �, let A� be the closure of ����

A�. The state f� is determined by the condition f��A� � f�, and
it is easy to see that f� must be pure. [If g1 and g2 are states on
A� such that f� � (g1 � g2)/2, then for all � � � purity of f� implies
that g1 and g2 agree when restricted to A�; thus g1 � g2.] This
completes the description of the construction.

Now define a state f on B(H) by letting f �A�
� f�. By

the reasoning used immediately above, f is pure, and since
0 � f(q�) � 1 for all �, the restriction of f to any masa is not
pure.

It is interesting to contrast Theorem 0.2 with Theorem 9 of ref.
4, which states that (assuming the continuum hypothesis) any
state on C(H) restricts to a pure state on some masa of C(H). This
does not conflict with our result because there are many masas
of C(H) that do not come from masas of B(H) (regardless of the
truth of the continuum hypothesis). Indeed, B(H) has 2�0 masas
but C(H) has 22�0 masas. This can be seen by first finding 2�0

mutually orthogonal nonzero projections p� in C(H), then finding
projections q�

1, q�
2 � p� such that q�

1 q�
2 � q�

2 q�
1 for each �, and

finally for each set S � 2�0 choosing a masa of C(H) that contains
{q�

1 : � � S} and {q�
2 : � � S}. It is easy to see that this

produces 22�0 distinct masas.
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